Nucleophilic substitution of S-phenyl thiol esters by electrogenerated polysulfide ions in N,N-dimethylacetamide

Abdelkader Ahrika, Meriem Anouti, Julie Robert and Jacky Paris*

Laboratoire de Physicochimie des Interfaces et des Milieux Réactionnels, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France

The reactivity of electrogenerated $S_{3}^{\frac{1}{3}}$ polysulfide ions S_{3}^{--} (\Longrightarrow S_{6}^{2-}) towards S-phenyl thiol esters RC(O)SPh [R = Me (1), Et (2), Prⁱ (3)] has been followed by spectroelectrochemistry in N,N-dimethyl-acetamide at 24 °C. With 1 and 2 reactions readily lead to thiocarboxylate ions and phenyltetrasulfanide ions, PhS₄⁻, from the nucleofugic benzenethiolate ions in presence of sulfur. With 3 kinetic studies imply that S_{6}^{2-} species are the nucleophilic $S_{3}^{\frac{1}{3}-}$ agents rather than S_{3}^{--} radical anions in a second order rate process ($k = 30 \pm 3 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$).

S-alkyl and *S*-aryl carbothioates ('thiol esters') are useful intermediates in organic synthesis, as they have a higher reactivity towards nucleophiles than their oxygen homologues. Their acylating properties have been notably used in lactonisations, leading to macrocyclic natural products¹ and the preparation of acylstannanes,² whereas superoxide ions substitute on dithioic *S*,*S*'-diesters.³

We recently reported on the reactions between S_3^- polysulfide ions and RC(O)X species [X = Cl;⁴ SC(O)R and OC(O)R⁵] in dipolar aprotic medium. Two successive and fast steps were evidenced with acyl chlorides and thioanhydrides: initial substitution [reaction (1)] followed by reaction (2) of thiocarboxylate

$$RC(O)X + 2S_3^{-} \longrightarrow RC(O)S^{-} + \frac{5}{2}S_2 + X^{-} \qquad (1)$$

$$RC(O)S^{-} + \frac{1}{2}S_2 + RC(O)X \longrightarrow [RC(O)]_2S_2 + X^{-} \quad (2)$$

ions in the presence of sulfur, leading to diacyl disulfides. With anhydrides, the first step occured at a lower rate.

We examine here the reactivity of electrogenerated S_3^{-1} ions towards a series of *S*-phenyl thiol esters RC(O)SPh [R = Me (1), Et (2), Prⁱ (3)] in *N*,*N*-dimethylacetamide (DMA). Both the known spectroelectrochemical characteristics of sulfur/ polysulfide ions and the behaviour of the nucleofugic benzene-thiolate ions in the presence of sulfur enabled the reactions to be followed by UV–VIS absorption spectrophotometry coupled with stationary voltammetry.

Results

Characteristics of sulfur/polysulfides and benzenethiolate-sulfur solutions in DMA

The partial dissociation of cyclooctasulfur S_8 into S_2 molecules (~50% at $[S_8]_T = 1.5 \times 10^{-3}$ mol dm⁻³) in dimethylacetamide was recently proposed by our group⁶ [equilibrium (3), eqns. (4)

$$S_8 = 4S_2$$
 (3)

$$K_1(297 \text{ K}) = [S_2]^4 [S_8]^{-1} = 10^{-7} \text{ mol}^3 \text{ dm}^{-9}$$
 (4)

and (5)]. As in other aprotic media, sulfur reduces in DMA in

$$[S_8]_T = [S_8] + \frac{1}{4}[S_2] \tag{5}$$

two bielectronic steps with respect to total S_8^6 (waves R_1 , $E_2 = -0.40$ V vs. ref.[†] and R_2 , $E_2 = -1.10$ V on a rotating gold-

disc electrode). In the course of its electrolysis at controlled potential on R_1 [reaction (6), probably through the initial elec-

$$S_8 + 2e^- \longrightarrow S_8^{2-} \tag{6}$$

tron transfer⁶ S₂ + e⁻ \rightarrow S₂⁻ followed by the reactions of S₂ on the dimeric form S₄²⁻, then on S₆²⁻ up to S₈²⁻], S₈²⁻ ions [$\lambda_{max1} = 515$ nm, $\varepsilon_{max1} = 3800$ dm³ mol⁻¹ cm⁻¹; $\lambda_{max2} = 360$ nm, $\varepsilon_{max2} = 9000$ dm³ mol⁻¹ cm⁻¹; $\varepsilon_{617} = 300$ dm³ mol⁻¹ cm⁻¹; $E_2(\mathbf{R}) = -1.10$ V, $E_2(\mathbf{O}) = -0.20$ V] disproportionate into S₃⁻⁻ ions [$\lambda_{max} = 617$ nm, $\varepsilon_{max} = 4390$ dm³ mol⁻¹ cm⁻¹; $E_2(\mathbf{R}) = -1.10$ V, $E_2(\mathbf{O}) = -0.20$ V] and sulfur [equilibrium (7), eqn. (8)]. The total consumption of

$$\mathbf{S}_{8}^{2-} \xrightarrow{\mathbf{1}}_{\mathbf{b}} 2\mathbf{S}_{3}^{*-} + \mathbf{S}_{2} \tag{7}$$

 $K_2 (297 \text{ K}) = [S_3^{\cdot -}]^2 [S_2] [S_8^{2-}]^{-1} = 1.7 \times 10^{-6} \text{ mol}^2 \text{ dm}^{-6}$ (8)

sulfur leads to $S_3^{\frac{1}{3}}$ polysulfide ions, S_3^{-} and S_6^{2-} ($\lambda_{max} = 465$ nm, $\varepsilon_{max} = 3100$ dm³ mol⁻¹ cm⁻¹) in equilibrium [equilibrium (9),

$$S_6^{2-} \longrightarrow 2S_3^{\cdot-}$$
 (9)

eqn. (10)]. In dilute solutions, $[S_6^{2-}]$ remains low in comparison

$$K_3(297 \text{ K}) = [S_3^{-}]^2 [S_6^{2-}]^{-1} = 0.043 \text{ mol dm}^{-3}$$
 (10)

to $[S_3^{--}]$ (e.g. $[S_6^{2-}] = 0.42 \times 10^{-3} \text{ mol dm}^{-3}$ at total concentration $[S_3^{--}]_T^0 = [S_3^{--}] + 2[S_6^{2-}] = 5.0 \times 10^{-3} \text{ mol dm}^{-3}$).

In DMA we showed that thiolate ions react with sulfur in two parallel and fast ways:⁷ (*i*) weak oxidation [reaction (11)] giving

$$2RS^{-} + 3S_2 \longrightarrow RS_2R + 2S_3^{\cdot -}$$
(11)

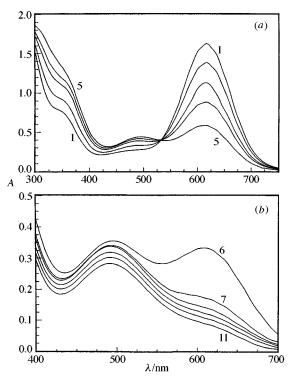
disulfides and polysulfide ions and (ii) dominating reaction (12)

$$2\mathbf{R}\mathbf{S}_{x-1}^{-} + \mathbf{S}_{2} = 2\mathbf{R}\mathbf{S}_{x}^{-} \tag{12}$$

yielding successive formation of RS_x^- ions (R = alkyl, x = 2-5; R = aryl, x = 2-4):

$$K_{(x)} = [RS_x^{-}]^2 [RS_{x-1}^{-}]^{-2} [S_2]^{-1}$$
(13)

The reactivity of RS⁻ ions towards sulfur is the same as that of 'thionucleophilic' Nu species such as CN^- , SO_3^{2-} and Ar_3P , leading to SNu products, with the hypothetical opening of the S₈ ring as the rate-determining step.⁸ By analogy with RS⁻/O₂ processes,⁹ we suggested ^{7a} a very different mechanism involving initial monoelectronic transfer [reaction (14)] followed by coup-



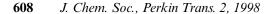
[†] All potentials are expressed in comparison to the reference electrode (ref. 6) Ag/AgCl(s), KCl sat. in DMA/N(Et)₄ClO₄ 0.1 mol dm⁻³.

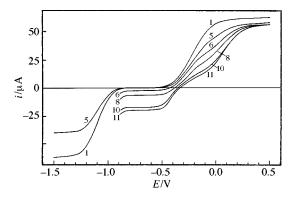
Table 1 Spectroelectrochemical characteristics and successive formation constants of PhS_x^- ions in *N*,*N*-dimethylacetamide

PhS_x^-	$\lambda_{\rm max}/{\rm nm}$	$\varepsilon_{\rm max}/{\rm dm^3~mol~cm^{-1}}$	$E_2(\mathbf{O})/\mathbf{V}$	$K_{(x)}^{a}/\mathrm{mol}\mathrm{dm}^{-3}$
PhS^{-} PhS_{2}^{-} PhS_{3}^{-} PhS_{4}^{-}	309 310 ^b 460 460	18200 3200 ^b 400 900	$+0.16 \\ -0.03 \\ +0.10 \\ +0.10$	$\overline{3.4 \times 10^9}$ 1.2×10^7 5.8×10^4

^{*a*} $K_{(x)}$ at 298 K and ionic strength = 0.1 mol dm⁻³. ^{*b*} From ref. 7*b*.

Fig. 1 Evolution of UV–VIS spectra during the addition of *S*-phenyl thioacetate to a S_{3}^{--} solution $[S_{3}^{--}]_{T}^{0} = 4.30 \times 10^{-3} \text{ mol } \text{dm}^{-3}$. (*a*) $y = [\text{RC}(\text{O})\text{SPh}]_{\text{ad}}/[S_{3}^{--}]_{T}^{0} = 0$ (1); 0.04 (2); 0.08 (3); 0.13 (4); 0.21 (5). (*b*) y = 0.30 (6); 0.38 (7); 0.46 (8); 0.72 (9); 0.89 (10); 1.36 (11). Scan rate: 1000 nm min⁻¹.


$$RS^- + S_2 \longrightarrow RS^{\cdot} + S_2^{\cdot -}$$
(14)


lings between RS' and S₂⁻ radicals into RS₃⁻ ions (reducible into RS₂⁻ by RS⁻ in excess), RS₂R and polysulfide ions. With less reductive aromatic thiolates ArS⁻ (Ar = C₆H₅, 4-CH₃C₆H₄), oxidation (11) was practically unobserved. For values of x greater than 2, RS_x⁻ ions were characterized^{7a} by a visible band ($\lambda_{max} = 460-470$ nm) and their oxidation wave into RS₂R. Table 1 summarizes spectroelectrochemical parameters for C₆H₅S_x⁻ ions, and their successive formation constants K_(x). Whatever the nature of R, RS₄⁻ ions partly disproportionate according to the key equilibrium (15) [with eqn. (16)], at the junction of concurrent eqns. (11) and (12).^{7a}

$$2RS_4^- \Longrightarrow RS_2R + 2S_3^{--}$$
(15)

$$K_4 = [RS_2R][S_3^{-}]^2[RS_4^{-}]^{-2}$$
(16)

When RS_2R and S_3^{-} were mixed in the ratio 1:2, spectra and voltammograms were the same as those obtained by mixing sulfur and thiolate ions in the proportion $[S]_{ad}/[RS^{-}]_0 = 3$. In the present study, PhS_4^{-} ions will be directly generated by electroreduction of diphenyl disulfide into benzenethiolate ions, then stoichiometric addition of sulfur as previously described,^{7a} and the value K_4 (298 K) = 2.0×10^{-4} mol dm⁻³ (R = Ph) will be taken again.

Fig. 2 Evolution of voltammograms during the reaction of *S*-phenyl thioacetate with S_{s}^{1-} ions. Same conditions as for Fig. 1. Rotating gold-disc electrode, $\Omega = 1000$ rev min⁻¹, diameter = 2mm. *E vs.* reference Ag/AgCl_(s), KCl sat. in DMA/N(Et)₄ClO₄ 0.1 mol dm⁻³. Scan rate: 10 mV s⁻¹.

Reactivity of S_3^{-} ions with *S*-phenyl thiol esters

With S-phenyl thioacetate (1) and S-phenyl thiopropionate (2) esters the fast reactions were followed at 24 °C by the same evolutions of $A = f(\lambda)$ and i = f(E) recordings as shown in Figs. 1(*a*), 1(*b*) and 2 when CH₃C(O)SPh was added to a solution $[S_3^{--}]_T^0 = 4.30 \times 10^{-3} \text{ mol } \text{dm}^{-3}$. (*i*) As long as the ratio $y = [\text{RC}(\text{O})\text{SPh}]_{\text{ad}}/[\text{S}_3^{--}]_T^0$ remained less than 0.25 [Figs. 1(*a*) and 2, curves (2)–(5)], the consumption of S_3^{--} ions was evidenced by the fall in anodic and cathodic currents $[E_3(\text{O}) = -0.20, E_3(\text{R}) = -1.10 \text{ V}]$, and A_{617} decreased to the benefit of A_{490} through an approximate isosbestic point at 525 nm without any appearance of sulfur (no wave R_1 on voltammograms), in agreement with reactions (7b) and (17) and (18), summarized by the overall reaction (19).

 $RC(O)SPh + 2S_3^{-} \longrightarrow RC(O)S^- + PhS^- + \frac{5}{7}S_2$ (17)

$$hS^- + \frac{3}{2}S_2 \longrightarrow PhS_4^-$$
 (18)

$$2S_3^{\cdot -} + S_2 \longrightarrow S_8^{2-} \tag{7b}$$

$$RC(O)SPh + 4S_3^{-} \longrightarrow RC(O)S^- + PhS_4^- + S_8^{2-}$$
(19)

Sulfur coming from substitution (17) reacts preferentially with PhS⁻ rather than S₃⁻ ions, up to PhS₄⁻: as an example, for $[S_3^{-}]_1^0 = 4.30 \times 10^{-3}$ mol dm⁻³ and $[RC(O)SPh]_{ad.} =$ $0.537_5 \times 10^{-3}$ mol dm⁻³ ($y = \frac{1}{8}$), K_1 , K_2 , K_3 and $K_{(x)}$ constants for reaction (17) give calculated concentrations at equilibrium: $[S_3^{-}]_T = 2.17_5 \times 10^{-3}$, $[S_2] = 8.1 \times 10^{-6}$, $[S_8^{2-}] = 0.525 \times 10^{-3}$ and $[PhS_4^{-}] = 0.537 \times 10^{-3}$ mol dm⁻³, with $[PhS_4^{-}] \approx [S_8^{2-}]$ bearing out reaction (19). The maximal absorption of S_8^{2-} ions at 515 nm was slightly shifted to shorter wavelengths (\approx 490 nm) by the presence of PhS₄⁻ ions. From⁷ $\varepsilon_{490}(S_8^{2-}) \approx 3500$ and ε_{490} -(PhS₄⁻) ≈ 800 dm³ mol⁻¹ cm⁻¹, variations $\Delta([S_3^{--}]_T)/\Delta[S_8^{2--}] =$ -4.0 ± 0.2 (0 < y < 0.2) satisfied reaction (19). (*ii*) For 0.25 < y < 0.50 [curves (6)–(8)], the consumption of S₃⁻⁻ and S₈²⁻ ions [probably through the shift (7f) because S₈²⁻ ions are less nucleophilic species than S₃¹⁻⁻ ones¹⁰] entailed both decreases of A_{617} and A_{490} , and growths of the oxidation current of PhS₄⁻ ions [$E_4(O) = +0.10$ V] and of the reduction wave R₁ of sulfur [$E_4(R) = -0.40$ V], according to reaction (20).

$$RC(O)SPh + 2S_3^{-} \longrightarrow RC(O)S^- + S_2 + PhS_4^- \quad (20)$$

However for y = 0.5, S_3^{-} and $S_8^{2^-}$ ions were not eliminated because of their partial regeneration by the extensive disproportionation [reaction (15)] of PhS_4^- ions followed by reaction (7b): *e.g.* with initial conditions $[PhS_4^-]_0 = [S_2]_0 = 2.15 \times 10^{-3} \text{ mol}$ dm^{-3} , at equilibrium $[PhS_4^-] = 0.55 \times 10^{-3}$, $[S_2] = 1.49 \times 10^{-3}$, $[S_3^{--}]_T = 0.276 \times 10^{-3}$ and $[S_8^{2^-}] = 0.66 \times 10^{-3} \text{ mol } dm^{-3}$ from K_2 and K_4 constants; (*iii*) beyond y = 0.5 [curves (9)–(11)] the evolution of VIS spectra was strictly the same as that observed with the direct addition of RC(O)SPh to a solution $[PhS_4^-]_0 = 2.15 \times 10^{-3}$ mol dm⁻³: the substrate in excess displaces equilibrium (15) by the reaction (20) with polysulfide ions.

In the presence of sulfur, $RC(O)S^-$ ions weakly lead to the formation [reaction (21), with eqn. (22)] of $RC(O)S_2^-$ species as

$$2RC(O)S^{-} + S_2 \xrightarrow[b]{f} 2RC(O)S_2^{-}$$
(21)

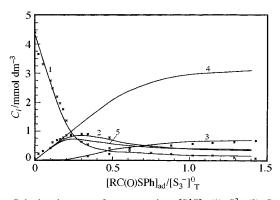
$$K_5 = [RC(O)S_2^-]^2 [RC(O)S^-]^{-2} [S_2]^{-1}$$
(22)

previously reported.¹¹ For example, with $R = CH_3$ and $[CH_3C(O)S^-]_0 = 2[S_2]_0 = 2.15 \times 10^{-3} \text{ mol } \text{dm}^3 \text{ RC}(O)S_2^- \text{ reaches}$ 17% at equilibrium from¹¹ K_5 (293 K) = 48 dm³ mol⁻¹. As observed with thiolate ions,⁷ RC(O)S⁻ species directly oxidize into disulfides [reaction (23), $R = CH_3$, $E_2(O) = +0.31$ V], or at

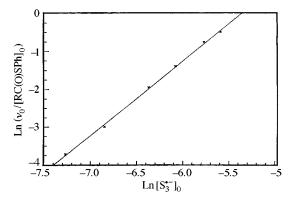
$$2RC(O)S^{-} - 2e^{-} \longrightarrow [RC(O)]_{2}S_{2}$$
(23)

the lower potentials of $\text{RC}(\text{O})\text{S}_2^-$ ions $[E_2(\text{O}) \approx +0.09 \text{ V}]$ in the presence of traces of sulfur, by the electrocatalytic process¹¹ given by reactions (21) + (24).

$$2RC(O)S_2^- - 2e^- \longrightarrow [RC(O)]_2S_2 + S_2 \qquad (24)$$


We verified that CH₃C(O)S⁻/CH₃C(O)S₂⁻ ions, which were generated by initial electroreduction of thiolacetic acid,¹¹ are unreactive towards the substrate CH₃C(O)SPh {(i = f(E) and $A = f(\lambda)$ recordings of an initial solution [CH₃C(O)S⁻]₀ = 1.45×10^{-3} mol dm⁻³, [S]₀ = 7.85×10^{-3} mol dm⁻³ were unmodified by the addition of [CH₃C(O)SPh] = 3.25×10^{-3} mol dm⁻³}; so in the course of the overall reaction (20) (0 < y < 0.5, Fig. 2) the anodic currents of PhS₄⁻ ($E_2 = +0.10$ V) and CH₃C(O)S⁻/CH₃C(O)S⁻₂ ions ($E_2 \approx +0.09$ V) progressively took the place of S₃⁻⁷/S₈² one ($E_2 = -0.20$ V).

During the progress y of the fast reaction between S-phenyl thiopropionate ester (2) and an initial solution $[S_3^{\cdot}]_T^0 =$ 4.30×10^{-3} mol dm⁻³, [S₃⁻]_T was accurately determined (0 < y < 1.5) with A_{675} measurements, a wavelength at which the radical anion alone absorbs $[\varepsilon_{675} (S_3^{-}) = 1825 \text{ dm}^3 \text{ mol}^{-1}$ cm⁻¹]; $[S_8]_T$ was estimated (y > 0.3) from $i(R_1)$ values by use of the coefficient $i(R_1)/[S_8]_T = 34.0 \pm 0.5 \ \mu A \ mmol^{-1} \ dm^3$ depending on our working electrode; $[S_8^{2-}]$ was deducted from spectrophotometric parameters at 490 and 617 nm with a significant precision for 0 < y < 0.5. Fig. 3 shows the changes of these 'experimental' concentrations, and of all the calculated values ‡ from constants K_1 - K_4 and equations of conservation of sulfur, thiolester and charges as a function of v. It summarizes the previously described steps: (i) $0 < y \le 0.25$ [eqn. (19)] without any detection of sulfur and maximal formation of S_8^{2-} ions for $y \approx 0.25$; (ii) quantitative generation of RC(O)S⁻ ions up to y = 0.5 [eqn. (20)]; (iii) y > 0.5: partial consumption of PhS₄⁻ ions from the shift of equilibrium (15), with an advancement for y = 1 of 70% with respect to the balance [reaction (25)] of eqns. (15) + (20).


$$RC(O)SPh + S_3^{-} \longrightarrow RC(O)S^{-} + \frac{1}{2}PhS_2Ph + S_2$$
 (25)

Kinetic studies of the reaction of $S_3^{\frac{1}{3}-}$ ions with S-phenyl thioisobutyrate

Probably owing to steric hindrance, *S*-phenyl thioisobutyrate reacted slowly with S_{3}^{1-} ions. In that case the kinetic study was carried out at 24 °C on the recordings of A_{617} vs. time after the addition of substrate 3 to $[S_{3}]_{T}^{0}$ solutions [eqn. (26)].

Fig. 3 Calculated curves of concentrations $[S_3^{-1}]_T(1)$, $S_8^{2-}(2)$, $S_8(3)$, RC(O)S⁻ (4), PhS₄⁻ (5) as a function of $y = [RC(O)SPh]_{ad}/[S_3^{-1}]_T^0$ compared with experimental values during the addition of *S*-phenyl thioproprionate to a S_3^{-1} solution $[S_3^{-1}]_T^0 = 4.30 \times 10^{-3} \text{ mol dm}^{-3}$

Fig. 4 Kinetic studies of the reaction of *S*-phenyl thioisobutyrate with S_{3}^{-} at 24 °C. Variation of the initial rate as a function of $[S_{3}^{+}]_{0}$.

$$A_{617}^{t}/l = \varepsilon_{3}[\mathbf{S}_{3}^{*-}]_{t} + \varepsilon_{8}[\mathbf{S}_{8}^{2-}]_{t}$$
(26)

The order *n* of the reaction concerning S_3^{-} was obtained by the initial-rate method. As long as the ratio Δ [RC(O)SPh]/[S_3^{-}]⁰_T remains less than $\frac{1}{4}$, the overall reaction (19) can be considered

$$RC(O)SPh + 4S_3^{-} \longrightarrow RC(O)S^- + PhS_4^- + S_8^{2-}$$
(19)

alone, without any absorbance of PhS_4^- and S_6^{2-} ions at 617 $nm.^7$

In nucleophilic processes, the reactivity of the least reducing polysulfide ions S_8^{2-12} was negligible in comparison to that of $S_3^{\frac{1}{3}}$ species;¹⁰ here again the rate of reaction (19) greatly decreased when **3** was added to a solution $S_3^{\frac{1}{3}}$ saturated with sulfur. ([S_8]_T $\approx 9 \times 10^{-3}$ mol dm⁻³), so the rate equation can be expressed as eqns. (27) and (28). Constant K_3 and the linked

$$v_t = -\frac{1}{4} \frac{d[\mathbf{S}_3^{-}]_{\mathrm{T}}}{dt} = k_{\mathrm{obs}} [\mathrm{RC}(\mathrm{O})\mathrm{SPh}]_t [\mathbf{S}_3^{-}]_t^n \qquad (27)$$

$$\ln(v_0 / [RC(O)SPh]_0) = \ln k_{obs} + n \ln[S_3^{-}]_0$$
(28)

variations of $[S_3^{*-}]_t$ and $[S_8^{2-}]_t$ [reaction (19)] easily give eqn. (29).

$$\nu_{0} = -\frac{1}{4\varepsilon_{3} - \varepsilon_{8}} \left(1 + \frac{4[S_{3}^{*-}]_{0}}{K_{3}}\right) \frac{1}{l} \left(\frac{dA_{617}}{dt}\right)_{t \longrightarrow 0}$$
(29)

The determination of v_0 for six pairs of values $([S_3^-]_{T}^0, [RC(O)SPh]_0)$ enabled us to obtain (Fig. 4) $n = 1.98 \pm 0.08$ and $k_{obs} = 710 \pm 40$ dm⁶ mol⁻² s⁻¹ at an ionic strength equal to 0.1 mol dm⁻³. The hypothesis of a trimolecular process in the rate-determining step is relatively improbable. This fact, which was previously noticed in the course of the slow reactions between S_3^{1-} ions and nitroaromatic halides ^{10a} or vicinal dibromides, ^{10b}

[‡] The minor formation of acyl disulfide ions according to equilibrium (21) was not taken into account in our iterative calculations.

led us to propose also S_6^{2-} ions as the effective nucleophilic agents in substitutions (20). It can be attributed to the more localized charge on terminal sulfur atoms of S_6^{2-} compared to S_3^{--} ones, as proposed by Meyer *et al.*¹³ using calculations by the extended Hückel method. The rate is thus characterized by the constant $k = k_{obs} \times K_3$ with k (3) = 30 ± 3 dm³ mol⁻¹ s⁻¹.

Discussion

When S-methyl thiobutanoate and S-ethyl thioacetate, or ethyl and phenyl acetate were added at 24 °C to S_3^{-1} solutions in DMA in the ratio [RC(O)XR']/[$S_3^{-1}]_T^0 = 5$ (X = S, O) reactions did not occur to any appreciable extent. The reactivity of S_3^{1-1} ions towards S-phenyl thiolesters in N,N-dimethylacetamide can be compared to that of O_2^{-1} ions on O-phenyl esters in pyridine¹⁴ [k(CH_3CO_2Ph) = 160, k(CH_3CO_2Et) = 1.1 × 10⁻² dm³ mol⁻¹ s⁻¹; 20 °C ?] or DMF¹⁵ {k[4-ClC₆H₄OC(O)Ph] = 25, k(C₆H₅CO₂Ph) = 3.0 dm³ mol⁻¹ s⁻¹; 20 °C}. On the basis of cyclic voltammetry experiments,¹⁴ the implication of an initial addition–elimination mechanism (30) was proposed for

$$RC(O)X + O_2^{\bullet-} \xrightarrow{k} R \xrightarrow{O^-}_{l} X \xrightarrow{O^-}_{l} RC(O)OO^{\bullet} + X^-$$

 $RC(O)X + O_2^{-}$ reactions evolved with esters, followed by the reduction of the acylperoxyradical [reaction (31)]. Owing to the

$$RC(O)OO^{\bullet} + O_2^{\bullet-} \longrightarrow RC(O)OO^{-} + O_2$$
 (31)

presumed high nucleophilicity of $RC(O)OO^-$ anions, the final formation of carboxylate ions^{14,15} was ascribed to subsequent reactions (32) and (33).

$$RC(O)OO^{-} + RC(O)X \longrightarrow [RC(O)]_2O_2 + X^{-} \quad (32)$$

$$[RC(O)]_2O_2 + 2O_2^{-} \longrightarrow 2RC(O)O^{-} + 2O_2 \qquad (33)$$

The net rate depended on the stability of the leaving group $X^{-}[k(Ar O^{-}) \ge k(R'O^{-})]$ as observed in the present study with thiol esters $[k(PhS^{-}) \gg k(RS^{-})]$. Reactions of acyl chlorides and 'thioanhydrides'⁵ with $S^{\frac{1}{3}}$ ions occurred in two overall steps (1) and (2), respectively analogous to (30) + (31) and (32), but $RC(O)S_2^-$ ions greatly dissociate into $RC(O)S^-$ and sulfur [eqn. (21b)].¹¹ The only formation of diacyl disulfides by the addition of RC(O)Cl to RC(O)S⁻ + S_2^{11} [eqn. (2)] was explained by an enhanced reactivity of minory $RC(O)S_2^-$ ions with respect to thiocarboxylate ions ' α -effect'.¹⁶ In the same conditions [step (2)], anhydrides [RC(O)]₂O were practically unreactive⁵ as shown here with S-phenyl thiol esters. So, in the course of $RC(O)OR' + O_2^{-}$ processes, ions RCO_2^{-} ions could result from the dissociation of RC(O)OO⁻ species rather than from eqns. (32) + (33). This hypothesis agrees with the dispute about an intermediate diacyl peroxide en route to the acid RCO₂H when superoxide ions reacted with phenylbenzoate esters in benzene.17

To conclude, in dipolar aprotic medium thiocarboxylate ions are readily obtained from S_6^{2-} ions and the more efficient acylating agents *S*-phenyl thiol esters than *O*-homologues, probably due to the weak conjugation between sulfur and the carbonyl group.¹⁸

Experimental

Materials and equipment

All the organic compounds of commercial origin (purity > 98%) were used as received except for thiolacetic acid which

was distilled under dry nitrogen just before handling. The purification of *N*,*N*-dimethylacetamide and its storage after addition of $N(Et)_4ClO_4$ 0.1 mol dm⁻³, spectroelectrochemical equipment, electrodes and the thermostatted (24.0 ± 0.5 °C) flow-through cell have been described previously.⁶

Generation of $S^{\frac{1}{3}-}$ solutions and procedures

Initial $S_{3}^{\frac{1}{3}-}$ solutions (40 cm³) were obtained by exhaustive electrolysis [reaction (34)] of sulfur (0.1–0.65 mmol S) at controlled

$$S_8 + \frac{8}{3}e^- \longrightarrow \frac{8}{3}S_3^{\cdot -}$$
(34)

potential of a large gold grid electrode on the plateau of the R₂ wave (E = -1.3 V). S₃⁻ ions in equilibrium with S₆²⁻ [reaction (9)] were the only species in solution when A_{617} reached a maximum.

The stoichiometry of the fast overall (19) and (20) processes was studied by the progressive addition of concentrated solutions of RC(O)SPh 1 or 2 in DMA ($\nu_{max} = 4 \text{ cm}^3$) to $S_{3}^{!-1}$ ions (4.2 × 10⁻³ < [$S_{3}^{!-1}$]_T⁰ < 4.60 × 10⁻³ mol dm⁻³).

Initial rate measurements were based on A_{617} changes vs. time when a small volume ($v_{max} = 1 \text{ cm}^3$) of S-phenyl thioisobutyrate in DMA was added to each of six solutions 0.77×10^{-3} $< [S_3^{--}]_T^0 < 3.18 \times 10^{-3} \text{ mol dm}^{-3} (0.37 > y > 0.18)$ at 24 °C; the transfer of the reaction medium to the spectrophotometric cell (1 mm pathlength) took about 15 s, whereas reaction half-times with respect to S_3^{--} were such as 230 s > $t_2^1 > 70$ s.

References

- (a) S. Masamume, H. Yamamoto, S. Kamata and A. Fukuzawa, J. Am. Chem. Soc., 1975, 97, 3513; (b) H. Yamamoto, S. Kamata and W. Schilling, J. Am. Chem. Soc., 1975, 97, 3515; (c) K. C. Nicolaou, Tetrahedron, 1977, 33, 683.
- 2 A. Capperucci, A. Degl'Innocenti, C. Faggi, G. Reginato and A. Ricci, J. Org. Chem., 1989, 54, 2966.
- 3 R. D. Webster and A. M. Bond, J. Chem. Soc., Perkin Trans. 2, 1997, 1075.
- 4 J. Robert, M. Anouti, M. Abarbri and J. Paris, J. Chem. Soc., Perkin Trans. 2, 1997, 1759.
- 5 J. Robert, M. Anouti and J. Paris, New J. Chem., 1998, in the press.
- 6 G. Bosser and J. Paris, *New J. Chem.*, 1995, **19**, 391 and references cited therein.
- 7 (a) G. Bosser, M. Anouti and J. Paris, J. Chem. Soc., Perkin Trans. 2, 1996, 1993; (b) M. Benaïchouche, G. Bosser, J. Paris, J. Auger and V. Plichon, J. Chem. Soc., Perkin Trans. 2, 1990, 31.
- 8 S. Oae, Organic Sulfur Chemistry: Structure and Mechanism, CRC Press, Ann Arbor, 1991, pp. 119–134 and references cited therein.
- 9 C. Degrand and H. Lund, Acta Chem. Scand., Ser. B, 1979, 33, 512.
- 10 (a) M. Benaïchouche, G. Bosser, J. Paris and V. Plichon, J. Chem. Soc., Perkin Trans. 2, 1991, 817; (b) G. Bosser and J. Paris, J. Chem. Soc., Perkin Trans. 2, 1992, 2057.
- 11 J. Robert, M. Anouti and J. Paris, J. Chem. Soc., Perkin Trans. 2, 1997, 473.
- 12 J. Paris and V. Plichon, Electrochim. Acta, 1982, 27, 1501.
- 13 B. Meyer, L. Peter and K. Spitzer, in *Homolytic Rings, Chains and Macromolecules of Main-group Elements*, ed. A. L. Rheingold, Elsevier, 1977, 477.
- 14 M. J. Gibian, D. T. Sawyer, T. Ungermann, R. Tangpoonpholvivat and M. M. Morrison, J. Am. Chem. Soc., 1979, 101, 640.
- 15 F. Magno and G. Bontempelli, J. Electroanal. Chem., 1976, 68, 337.
- 16 J. E. Dixon and T. C. Bruice, J. Am. Chem. Soc., 1972, 94, 2052 and references cited therein.
- 17 A. R. Forrester and V. Purushotham, J. Chem. Soc., Perkin Trans. 1, 1987, 945.
- 18 M. W. Cronyn, M. Pin chang and R. A. Wall, J. Am. Chem. Soc., 1955, 77, 3031.

Paper 7/07562F Received 20th October 1997 Accepted 12th December 1997